首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5206篇
  免费   215篇
  国内免费   319篇
系统科学   17篇
丛书文集   165篇
教育与普及   44篇
理论与方法论   4篇
现状及发展   25篇
综合类   5485篇
  2024年   4篇
  2023年   22篇
  2022年   34篇
  2021年   38篇
  2020年   36篇
  2019年   41篇
  2018年   51篇
  2017年   79篇
  2016年   81篇
  2015年   114篇
  2014年   194篇
  2013年   165篇
  2012年   260篇
  2011年   275篇
  2010年   199篇
  2009年   236篇
  2008年   223篇
  2007年   319篇
  2006年   310篇
  2005年   296篇
  2004年   274篇
  2003年   260篇
  2002年   223篇
  2001年   199篇
  2000年   207篇
  1999年   201篇
  1998年   147篇
  1997年   160篇
  1996年   197篇
  1995年   145篇
  1994年   134篇
  1993年   126篇
  1992年   109篇
  1991年   84篇
  1990年   89篇
  1989年   74篇
  1988年   63篇
  1987年   40篇
  1986年   25篇
  1985年   6篇
排序方式: 共有5740条查询结果,搜索用时 171 毫秒
11.
目前,60mm厚的砖砌薄墙已广泛应用于各类建筑。作为隔断墙,可以节省空间,然而施工中几乎不做拉结等处理,使得其安全性(如地震作用下的倒塌)令人担忧。为既提高砖隔墙的安全性,又不较大增加其截面尺寸,提出用钢筋钢丝网砂浆加固砖砌薄墙抗弯性能的思路。共制作了9片砖墙进行对比试验研究,分析了加固墙体的开裂荷载和极限承载力,观察墙体破坏特征。试验研究结果表明,钢筋钢丝网砂浆能有效地约束加固层砂浆及砖墙,显著提高砖墙抗弯承载力,砂浆和砖块不发生大块剥落,本文还提出了钢筋钢丝网砂浆加固砖砌薄墙的抗弯承载力计算公式。  相似文献   
12.
光滑平板降膜受表面张力和接触角的影响易收缩成溪流,导致传热表面出现干斑,为解决这一问题,提出箭型排布的矩形微槽平板。通过可靠的computational fluid dynamics(CFD)计算模拟两相流理论,建立三维非稳态平板降膜数学模型,研究了箭型排布的矩形微槽平板上的液膜流动特性,并探究了微槽宽度、深度及箭型夹角对液膜在平板上铺展效果的影响。结果表明:箭型排布的矩形微槽可有效增大液膜在平板横向的铺展面积,使液膜润湿面积增大,减少平板表面干斑;在120°箭型结构下,矩形微槽最优参数为宽0.5 mm,深0.3 mm,此时可将比湿面积由光板表面的62%~89%提高到84%~94%;低雷诺数时,120°箭型结构对液膜横向铺展引导效果显著,雷诺数增大时,90°箭型结构引导效果更好。  相似文献   
13.
行业公认技术作为流体检测的重要工具,近年来,在单一薄层AVO响应特征方面取得了许多重要成果,这些成果为地层中单一薄层流体检测定性解释奠定了良好的基础,但作为地层中沉积更为普遍更的地质结构——砂泥岩薄互层,研究相对较少。文中首先对声学介质和弹性介质条件下的薄互层AVO响应进行研究,其次利用交错差分弹性波动方程对韵律型含气等厚薄互层进行数值模拟,研究薄层数和单层厚度对薄互层AVO响应的影响,最后利用梯度的变化特征,对薄互层层进行分类,研究其截距梯度交会(P-G)属性。结果表明,薄互层的AVO响应在声学介质情况下会出现假亮点,在弹性介质中进行数值模拟更加合理。在弹性介质中与单层薄砂岩AVO响应进行比较,发现薄互层单层厚度小于1/8波长时,薄互层对顶面AVO效应起到加强的作用;而当薄互层单层厚度大于1/8波长小于1/4波长时,AVO效应较薄层情况减弱。随着薄互层单层厚度的增加,P-G值发生明显的变化。因此可以根据工区薄互层单层厚度和层数确定出薄互层发育的P-G属性的分布范围,从而指导储层预测,为勘探开发提供依据。  相似文献   
14.
X油田目前已进入开发中后期,薄油层的开发动用成为其保持稳产的重要措施之一。为提高挖潜措施的有效性,需对油藏特征进行精细描述,尤其是储层展布的刻画。由于储层薄、埋藏深、物性横向变化快,常规的地震属性分析及叠后波阻抗反演技术均无法对其进行有效识别和预测。该文以L4油藏为例,采用叠前纵横波联合反演技术对储层展布进行了预测,钻后砂体展布与钻前预测相吻合,使得依据本文研究成果所设计的调整井达到了预期效果,说明叠前纵横波联合反演技术在本地区具有较好的应用价值。  相似文献   
15.
薄膜的残余应力是影响MEMS器件工作可靠性和稳定性的重要因素,微旋转结构法能够简单有效地测量薄膜的残余应力.文中采用MEMS工艺制作Al薄膜微旋转结构,根据微旋转结构法对m薄膜的残余应力进行了测量和计算.实验结果表明,溅射Al膜的残余应力为张应力,大小在80~110 GPa之间.对Al薄膜悬梁进行静电驱动,其驱动电压为31 ~34 V,与根据Al膜残余应力的测量值所计算出的驱动电压基本吻合.  相似文献   
16.
高铁基硅混凝剂形成铅絮体的分形维数分析   总被引:1,自引:0,他引:1  
利用高铁基硅混凝剂及聚磷硫酸铁(PPFS)对含铅工业废水进行处理,考察含铅工业废水处理过程中分形维数对铅絮体的影响以及与铅离子去除率的关系。结果表明:对于模拟的含铅工业废水,高铁基硅混凝剂的最佳投药量(体积分数)为3.5×10-3,最佳的pH值为9.5,在此最佳条件下,铅絮体的分形维数最大,铅絮体最为密实,铅离子的去除率也最高,分形维数与铅离子去除率之间有良好的相关性;对于实际含铅工业废水,高铁基硅混凝剂的最佳投量为8×10-3,除率为92.5%,效果要好于PPFS;两种混凝剂的分形维数与铅离子去除率之间同样有良好相关性。  相似文献   
17.
基于碳热还原法制备碳化硅的原理,针对该方法合成成本高,反应时间长,所用设备昂贵,合成条件苛刻等缺陷.利用微波的良好加热性能,采用微波辅助碳热还原法制取碳化硅粉体.经实验表明,最优条件为:锌粉作催化剂,碳硅原子比为4:1,微波功率800W,微波时间30min.该方法制备的碳化硅为3C—SiC晶型,晶粒粒径相对较小.微波辅助碳热还原法具有成本低、产量大、反应时间短、尺寸相对较小,具有工业化应用的前景.  相似文献   
18.
针对桥面铺装结构较厚,且容易出现病害等问题,对桥面铺装材料力学性能进行分析,提出了一种桥面环氧薄层结构,并进行了防滑薄层弹性环氧胶黏剂的开发.通过对增韧剂、稀释剂和固化剂的研究、选择及配方优化,制得了一种性能良好的防滑薄层弹性环氧胶黏剂.通过拉伸测试可知,其拉伸强度可达21MPa,断裂伸长率达50%.同时其与混凝土粘接强度可达2.5MPa,且热相容性通过.试验结果表明,桥面防滑薄层弹性环氧胶黏剂综合性能优异,适用于桥面铺装工程.  相似文献   
19.
在加热到400°C的MgO(001)单晶基片上,用磁控溅射法沉积了25 nm厚的FePt薄膜,在Ta=[500°C,800°C]温度范围进行5 h的热处理.用X射线衍射仪、振动样品磁强计和可外加磁场的磁力显微镜分析了薄膜的结构和磁性.结果表明,未经热处理的薄膜能够在MgO(001)单晶基片的诱导下实现(001)取向生长,但仍处于无序的A1相,呈软磁性.Ta=500°C,薄膜结构没有明显改变.Ta=600°C,FePt发生部分有序化,薄膜中A1相和L10相(有序相)共存,形成一种具有磁各向异性的特殊硬磁-软磁复合体.软磁相的磁性主要表现在沿平行于膜面方向施加磁场的磁化曲线中,但矫顽力可以达到10 kOe(1Oe=103/4πA m-1),硬磁相的磁性主要表现在沿垂直于膜面方向施加磁场的磁化曲线中,矫顽力却只有5kOe.这说明薄膜中硬磁相和软磁相之间存在强烈的交换耦合,形成了磁性弹簧.当Ta提高到700°C,薄膜基本完成有序化,磁化易轴彻底转向垂直于膜面的方向,矫顽力大于20 kOe.原子力显微镜和磁力显微镜观察表明,薄膜由岛状颗粒构成,在Ta=700°C时大部分颗粒内部形成多磁畴结构,在不太大的磁场作用下依靠畴壁移动和消失变为单磁畴,磁化反转过程应该主要依靠形核.  相似文献   
20.
本文针对三维尺寸均处于纳米量级的材料与结构中常见的界面分层破坏问题,利用聚焦离子束技术(FIB)和透射电子显微镜(TEM)开发设计了一套研究纳米材料中界面端部裂纹启裂行为的实验方法.采用FIB成功从宏观多层薄膜材料(硅/铜/氮化硅,Si/Cu/SiN)中切割制备出了由硅基体(Si)和200 nm厚铜薄膜(Cu)及1000 nm厚氮化硅层(SiN)构成的纳米悬臂梁试样.利用高精度微小材料加载装置,在TEM中对该试样进行加载实验,并原位观测了不同试样中Cu/Si界面端部裂纹启裂的行为.通过对启裂瞬时Cu/Si界面上临界应力分布的有限元分析发现,不同尺寸试样中的界面上法向应力与剪切应力均集中在距界面端部100 nm的范围内,且临界法向应力远大于剪切应力.对应力分布的进一步分析则发现,距界面端部5 nm区域内的法向应力场控制着Cu/Si界面的分层破坏过程,可用于表征界面分层破坏的局部控制准则.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号